

Videos About Vapor Pressure

- Explaining Boiling <u>https://youtu.be/Ag4ILUXKuSM</u>
- Vapor Pressure, IMFs and Boiling Point <u>https://youtu.be/iZqsQhZ1CAs</u>
- Crash Course, Partial Pressures and Vapor Pressure <u>https://youtu.be/JbqtqCunYzA</u>

1 Identify the type of Intermolecular Force (Van Der Waals Force)

	Electronegativity Values	Covalent Bonding	Molecular Shape	Dipole	Intermolecular Force
$\begin{array}{c c} & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	the same	<i>non-polar</i> covalent bond	irrelevant	temporary dipole only	London Dispersion only
C C C C C C C C C C C C C C C C C C C	different	<i>polar</i> covalent bond	symmetrical non-polar molecule	temporary dipole only	<i>London Dispersion</i> only
$\delta^{+} \xrightarrow{\delta^{-}} \delta^{+} \xrightarrow{\delta^{-}} \delta^{-}$ HCl HCl HCl HCl HCl H	different	<i>polar</i> covalent bond	asymmetrical polar molecule	<i>permanent</i> <i>dipole</i> (& temporary)	<i>Dipole-Dipole</i> & LDF
H H H H H H H H H H H H H H H H H H H	<i>very different</i> H—F, O, N	<i>polar</i> covalent bond	asymmetrical polar molecule	<i>permanent</i> <i>dipole</i> (& temporary)	<i>Hydrogen Bonding</i> & <mark>Dipole-Dipole</mark> & LDF

(2) Compare the strength of Intermolecular Forces (Van Der Waals Force)

	Can think/write about	but must write about	to explain, for example,	in terms of
$\begin{array}{ c c c c }\hline F_2 & F - F & \textcircled{\begin{tabular}{c c c c c c } \hline F_2 & F - F & & & & & \\\hline \hline F_2 & F_1 - F & & & & & \\\hline \hline Cl_2 & Cl - Cl & & & & & & \\\hline \hline Cl_2 & f - Cl & & & & & & & \\\hline \hline 199 \ pm & & & & & & & & \\\hline \end{array}$	F-FImage: Classical system'the size of the atoms'Cl-ClImage: Classical system'the number of electron shells'		that the boiling points increase as you go down a group	the LDF's in are
Br ₂ Br—Br 228 pm	'electron distance from the nucleus'	'stronger temporary dipoles are formed'	that CCl_4 has a higher BPt than CH_4	stronger than in
	'the size of the molecules'	'the electron cloud is more extensive'		
	'the mass of the molecules'	'a larger number of	that the boiling points increase as the chain gets longer	the LDF's in are stronger than in
Octane (C ₈ H ₁₈)	'the number of atoms'	temporary dipoles are formed'		
Nonpolar Molecule Carbon dioxide Polar Molecule Water (+)	'the electronegativity values'	'the bonding is polar but no permanent dipole'	that the boiling points depend	hydrogen bonding > dipole-dipole >
	'the type of covalent bonds'	'the bonding is polar	on the <i>type</i> of intermolecular	LDF's
(-) (+) (-) Opposite pulling cancels Electrons pulled toward oxygen	'the shape of the molecule'	and there is a permanent dipole'	forces present	(in similar molecules)
	'the electronegativity values'	'bonding is non-polar / no permanent dipole'	that the boiling point of Br ₂ (LDF) is higher than that of	LDF's can be stronger
	'the shape of the molecule'	'the bonding is polar/ permanent dipole'	(data, not prediction)	even hydrogen bonding